Application Note 004

Evaluation board, Active V1.2, using module ETH-LORA-M-AX-01 (V1.2) and Ethertronics Active Steering Multiband ISM antenna
Table of Contents

Overview ... 1

General Description .. 1

PCB Layout .. 1

- PCB Ground Clearance for Antenna Ground Clearance ... 5
- Active Evaluation Board PCB Stack up and Size ... 6

Evaluation Board Schematic and BOM ... 7

Power Supply .. 12

- Power by Battery .. 12
- Power by Test Connector ... 12
 - Through LDO .. 12
 - Straight from the Test Connector .. 12

Antenna .. 12

- Controlling the Active Steering Antenna ... 12
 - Active Steering Antenna Control by AT-Commands ... 12
 - Active Steering Antenna Control by Antenna Test Connector 12

- Antenna Return Loss and Total Efficiency ... 13

Matching Circuit .. 13

Antenna Radiation Patterns ... 14

Active Steering Benefits (RSSI measurements) ... 15

AT-Commands ... 17
OVERVIEW

This Application Note provides hardware description for the active antenna evaluation board of Ethertronics LoRa module.

The versions of the parts are:

- Evaluation Board: EVB active antenna, V1.2.
- Module: Lora Module ETH-LORA-M-AX-01, V1.2

Instructions to setup the evaluation board are given with the full schematic and BOM.

GENERAL DESCRIPTION

The Evaluation Board (EVB) is provided with test-connector to control the Ethertronics Lora module with AT-commands and battery holder (3xAA batteries) for power supply. The EVB can also be powered through the test-connector.

PCB LAYOUT

ETHERTRONICS LORA ACTIVE EVALUATION BOARD (TOP LAYER, TOP VIEW)
Application Note 004
Evaluation board, Active V1.2, using module ETH-LORA-M-AX-01 (V1.2) and Ethertronics Active Steering Multiband ISM antenna

ETHERTRONICS LORA ACTIVE EVALUATION BOARD (BOTTOM LAYER, TOP VIEW)
Application Note 004
Evaluation board, Active V1.2, using module ETH-LORA-M-AX-01 (V1.2) and Ethertronics Active Steering Multiband ISM antenna

ETHERTRONICS LORA ACTIVE EVALUATION BOARD (LAYER 2, TOP VIEW)
Application Note 004
Evaluation board, Active V1.2, using module ETH-LORA-M-AX-01 (V1.2) and Ethertronics Active Steering Multiband ISM antenna

Figure 4

ETHERTRONICS LORA ACTIVE EVALUATION BOARD (LAYER 3, TOP VIEW)
Any routing on any layers on the antenna ground clearance is prohibited!
ACTIVE EVALUATION BOARD PCB STACK UP AND SIZE

The Active Evaluation Board size is 190x55 mm, 4 layers, 0.8 mm thick FR4 PCB.
- The PCB has cut outs holes to help cut the board to sizes 160 mm and 120 mm.
- The Layers 2 and 3 are ground layers, no signal lines routed in evaluation board. Do not use these layers for routing under the RF line.
- No routing under antenna pattern.
- For detailed antenna pattern dimensions, please contact Ethertronics via our website
EVALUATION BOARD SCHEMATIC AND BOM
ETHERTRONICS ACTIVE LORA EVALUATION BOARD SCHEMATIC
Application Note 004
Evaluation board, Active V1.2, using module ETH-LORA-M-AX-01 (V1.2) and Ethertronics Active Steering Multiband ISM antenna

DETAILED SCHEMATIC OF LORA MODULE WITH ANTENNA AND TEST CONNECTORS

Figure 8
Application Note 004
Evaluation board, Active V1.2, using module ETH-LORA-M-AX-01 (V1.2) and Ethertronics Active Steering Multiband ISM antenna

DETAILED SCHEMATIC OF POWER OF THE EVALUATION BOARD

Figure 9
BOM OF EVALUATION BOARD

<table>
<thead>
<tr>
<th>Schematic name</th>
<th>Manufacturer</th>
<th>Manufacture P/N</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>NA, Not Assembled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>NA, Not Assembled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>Murata</td>
<td>GRM188R6YA106MA73D</td>
<td>Capacitor 10 µF, 0603 35V</td>
</tr>
<tr>
<td>C4</td>
<td>Murata</td>
<td>GRM188R6YA106MA73D</td>
<td>Capacitor 10 µF, 0603 35V</td>
</tr>
<tr>
<td>LED1</td>
<td>Osram</td>
<td>LS Q976-NR-1</td>
<td>LED RED, 0603</td>
</tr>
<tr>
<td>R1</td>
<td>Panasonic</td>
<td>ERJ-S020R00X</td>
<td>Resistor 0Ω, 0402</td>
</tr>
<tr>
<td>R2</td>
<td>Panasonic</td>
<td>ERJ-S020R00X</td>
<td>Resistor 0Ω, 0402</td>
</tr>
<tr>
<td>R3</td>
<td>Panasonic</td>
<td>ERJ-S020R00X</td>
<td>Resistor 0Ω, 0402</td>
</tr>
<tr>
<td>R4</td>
<td>NA, Not Assembled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5</td>
<td>Panasonic</td>
<td>ERJ-S020R00X</td>
<td>Resistor 0Ω, 0402</td>
</tr>
<tr>
<td>R6</td>
<td>Panasonic</td>
<td>ERJ-S020R00X</td>
<td>Resistor 0Ω, 0402</td>
</tr>
<tr>
<td>R7</td>
<td>Panasonic</td>
<td>ERJ-S020R00X</td>
<td>Resistor 0Ω, 0402</td>
</tr>
<tr>
<td>R8</td>
<td>NA, Not Assembled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R9</td>
<td>NA, Not Assembled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R10</td>
<td>NA, Not Assembled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R11</td>
<td>Panasonic</td>
<td>ERJ-S020R00X</td>
<td>Resistor 0Ω, 0402</td>
</tr>
<tr>
<td>R12</td>
<td>NA, Not Assembled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R13</td>
<td>Panasonic</td>
<td>ERJ-S020R00X</td>
<td>Resistor 0Ω, 0402</td>
</tr>
<tr>
<td>R14</td>
<td>NA, Not Assembled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R15</td>
<td>Panasonic</td>
<td>ERJ-2RKF1002X</td>
<td>Resistor 10kΩ, 0402</td>
</tr>
<tr>
<td>R16</td>
<td>Panasonic</td>
<td>ERJ-2RKF2200X</td>
<td>Resistor 220Ω, 0402</td>
</tr>
<tr>
<td>R17</td>
<td>NA, Not Assembled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U$1</td>
<td>Ethertronics, Inc.</td>
<td>ETH_M_LORA_AX_REV1_2</td>
<td>Ethertronics LoRa module V1.2</td>
</tr>
<tr>
<td>Test connector</td>
<td>Molex LCC</td>
<td>22-28-4080</td>
<td>8 Positions Header, Breakaway Connector 2.54 mm Through Hole</td>
</tr>
<tr>
<td>Antenna test connector</td>
<td>Molex LCC</td>
<td>22-28-4053</td>
<td>5 Positions Header, Breakaway Connector 2.54 mm Through Hole</td>
</tr>
<tr>
<td>Battery connector</td>
<td>Memory protection devices</td>
<td>BC3A APC</td>
<td>Battery holder for 3xAA-batteries</td>
</tr>
<tr>
<td>US6</td>
<td>ST Microelectronics</td>
<td>LD39200PU33R</td>
<td>LDO 2A, DFN6 3x3mm</td>
</tr>
<tr>
<td>Reset button</td>
<td>RAFI</td>
<td>1.14002.1010000</td>
<td>Push Switch SPST-NO 0.1A 35V</td>
</tr>
<tr>
<td>Power source switch</td>
<td>NKK Switches</td>
<td>CS12ANW03</td>
<td>Slide switch SPDT 3A 125V</td>
</tr>
<tr>
<td>RF1</td>
<td>Murata</td>
<td>LQW15AN2N7B00D</td>
<td>RF inductor 2.7nH, 0402</td>
</tr>
<tr>
<td>RF2</td>
<td>Murata</td>
<td>GJM1555C1H150FB01D</td>
<td>RF capacitor 15 pF, 0402</td>
</tr>
<tr>
<td>RF3</td>
<td>Murata</td>
<td>LQW15AN1N5B00D</td>
<td>RF inductor 1.5nH, 0402</td>
</tr>
<tr>
<td>RF4</td>
<td>NA, Not Assembled</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1
COMPONENT LOCATION ON EVALUATION PCB

Figure 10
POWER SUPPLY
The Active LoRa evaluation board can be powered by three different ways. In below chapters all the power solutions are described. When the evaluation board is powered on, red LED light is turn on as an indicator of power.

POWER BY BATTERY
The Active LoRa Evaluation Board is provided with a battery holder for 3 AA-batteries. When powering the evaluation board with the batteries, the power selection switch is slide to position “Battery” and the evaluation board is powered through the Low Drop Out (LDO) regulator. The LDO is protecting the LoRa module from over voltage. The LDO has an output voltage of 3.3V

POWER BY TEST CONNECTOR
When powering through test connector, it is possible to route the power through the LDO or to bypass the LDO.

THROUGH LDO
The safest way to power the evaluation board by the test connector is through the LDO. To power up through LDO the power selection switch is slide to position “VDD_SWD”. The LDO will drop the input voltage by 0.3 V when providing 2 A. A minimum voltage of 3.6 V is therefore recommended before the LDO

STRAIGHT FROM THE TEST CONNECTOR
The evaluation board can be powered up also straight from the test connector without the protection of the LDO. To power up the board solder a 0 Ω resistor to the R17 pads and slide the power selection switch to position “Battery”. Be careful not to exceed 3.6 V on VDD_SWD pin. Exceeding this voltage may damage the LoRa module permanently.

ANTENNA
The Active Evaluation Board V1.1 is provided with a patented Ethertronics Active Steering Multiband ISM Antenna (ASA) design for ISM 868 MHz and 915 MHz bands. The antenna provides Ethertronics Null-Steering capability with single antenna structure for both ISM 868 MHz (EU) and ISM 915 MHz (US) bands.

CONTROLLING THE ACTIVE STEERING ANTENNA
The Active Steering Multiband ISM Antenna on the active evaluation board V1.1 can be controlled either by the AT-commands through the Ethertronics LoRa module or by using the antenna test connector on the evaluation board.

If the EC686 chipset is controlled by the LoRa module, the EC686 chipset is operating differently in ISM EU or ISM US bands, but this is handled automatically by the LoRa module.

ACTIVE STEERING ANTENNA CONTROL BY AT-COMMANDS
To control the Active Steering antenna via the AT commands (through the Lora module), the R3, R5, R6, and R7 pads must be populated with 0 Ω resistors and the R4, R8, R9, and R10 pads must be unpopulated.

ACTIVE STEERING ANTENNA CONTROL BY ANTENNA TEST CONNECTOR
The EC686 component can also be controlled by the antenna test connector using MIPI commands. In that case the R3, R5, R6, and R7 pads must be unpopulated and the R4, R8, R9, and R10 pads must be populated with 0 Ω resistors.

For the MIPI commands please refer to the Ethertronics EC686 data sheet.
ANTENNA RETURN LOSS AND TOTAL EFFICIENCY

TYPICAL RETURN LOSS AND TOTAL EFFICIENCY FOR ISM 868 MHZ. MEASURED ON 190X55 MM PCB

MATCHING CIRCUIT

There is no matching circuit for the Active Steering Antenna.
ANTENNA RADIATION PATTERNS

RADIATION PATTERNS FOR THE ISM 868 MHZ BAND AT 865 MHZ. MEASURED ON 190X55 MM PCB

865 MHz
Theta = 90 (XY)
Phi = 0 (XZ)
Phi = 90 (YZ)

RF1
RF3
Combined pattern
RF1
RF3
Combined pattern
RF1
RF3
Combined pattern

Figure 13

RADIATION PATTERNS FOR THE ISM 915 MHZ BAND AT 915 MHZ. MEASURED ON 190X55 MM PCB

915 MHz
Theta = 90 (XY)
Phi = 0 (XZ)
Phi = 90 (YZ)

RF2
RF3
Combined pattern
RF2
RF3
Combined pattern
RF2
RF3
Combined pattern

Figure 14
ACTIVE STEERING BENEFITS (RSSI MEASUREMENTS)

MEASUREMENT POSITION 1 FOR THE RSSI MEASUREMENT

Figure 15

ACTIVE STEERING/MCD MODE VS RSSI IN POSITION 1

Figure 16
MEASUREMENT POSITION 2 FOR THE RSSI MEASUREMENT

ACTIVE STEERING/MCD MODE VS RSSI IN POSITION 1

Figure 17

Figure 18
The Figures 15-18 show the benefit of the Active Steering Antenna:

- In Figures 16 and 18 the RSSI values are shown when the Ethertronics Active Evaluation Board V1.1 is measured in the positions shown in the Figures 15 and 17 respectively.
- It can be seen that in each position, one mode is better than the other one.
- In each position, the module (running the Ethertronics MCD algorithm) selects the best state after a training period.
- In the figures 16 and 18 it can be observed that the MCD algorithm converged to the best mode, which has the highest gain towards the gateway antenna, in both positions.

For more comprehensive explanation for the MCD algorithm and the way the measurements were done, please refer to application note LoRa_Module_Application_Note_5-Active-Steering-MCD-Algorithm (example) from www.avx.com/products/modules/lora-module.

AT-COMMANDS

Application Note 004
Evaluation board, Active V1.2, using module ETH-LORA-M-AX-01 (V1.2) and Ethertronics Active Steering Multiband ISM antenna

LIST OF FIGURES
Figure 1: Ethertronics LoRa Active Evaluation Board (Top Layer, top view) ... 1
Figure 2: Ethertronics LoRa Active Evaluation Board (Bottom Layer, top view) ... 2
Figure 3: Ethertronics LoRa Active Evaluation Board (Layer 2, top view) ... 3
Figure 4: Ethertronics LoRa Active Evaluation Board (Layer 3, top view) ... 4
Figure 5: PCB Ground Clearance for Antenna on all layers .. 5
Figure 6: Ethertronics LoRa Active Evaluation Board PCB Stack Up ... 6
Figure 7: Ethertronics Active LoRa Evaluation Board Schematic ... 7
Figure 8: Detailed Schematic of LoRa module with antenna and test connectors .. 8
Figure 9: Detailed Schematic of power of the evaluation board .. 9
Figure 10: Component Location on Evaluation PCB ... 11
Figure 11: Typical Return Loss and Total efficiency for ISM 868 MHz. Measured on 190x55 mm PCB 13
Figure 12: Typical Return Loss and Total efficiency for ISM 915 MHz. Measured on 190x55 mm PCB 13
Figure 13: Radiation patterns for the ISM 868 MHz band at 865 MHz. Measured on 190x55 mm PCB 14
Figure 14: Radiation patterns for the ISM 915 MHz band at 915 MHz. Measured on 190x55 mm PCB 14
Figure 15: Measurement position 1 for the RSSI measurement .. 15
Figure 16: Active steering/ MCD mode vs RSSI in position 1 .. 15
Figure 17: Measurement position 2 for the RSSI measurement .. 16
Figure 18: Active steering/ MCD mode vs RSSI in position 2 .. 16

LIST OF TABLES
Table 1: BOM of Evaluation board .. 10