Capacitor Dielectric Comparison Chart

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Multi-Layer Ceramics</th>
<th>Multi-Layer Glass-K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NPO</td>
<td>Stable</td>
</tr>
<tr>
<td>Range, mfd</td>
<td>1pF</td>
<td>1pF</td>
</tr>
<tr>
<td>Min. Tol. %</td>
<td>±0.5%</td>
<td>±5%</td>
</tr>
<tr>
<td>T.C. % ± C</td>
<td>±0.3%</td>
<td>±15%</td>
</tr>
<tr>
<td>I.R.</td>
<td><1.0 mfd</td>
<td>10 MΩ</td>
</tr>
<tr>
<td></td>
<td>>1.0 mfd</td>
<td>MΩ - mfd</td>
</tr>
<tr>
<td>Dissipation Factor</td>
<td>Percent</td>
<td>0.1%</td>
</tr>
<tr>
<td></td>
<td>Typical, %</td>
<td>0.6%</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>Freq. Response</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Max. Freq. (MHz)</td>
<td>For Δ C = ±10%</td>
</tr>
<tr>
<td>Stability (1000 Hrs.)</td>
<td>Typical Life Test, % Δ C</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

NOTICE: Specifications are subject to change without notice. Contact your nearest AVX Sales Office for the latest specifications. All statements, information and data given herein are believed to be accurate and reliable, but are presented without guarantee, warranty, or responsibility of any kind, expressed or implied. Statements or suggestions concerning possible use of our products are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. The user should not assume that all safety measures are indicated or that other measures may not be required. Specifications are typical and may not apply to all applications.
Basic Capacitor Formulas

I. Capacitance (farads)
 English: $C = \frac{.224 \text{ K A}}{T_D}$
 Metric: $C = \frac{.0884 \text{ K A}}{T_D}$

II. Energy stored in capacitors (Joules, watt - sec)
 $E = \frac{1}{2} CV^2$

III. Linear charge of a capacitor (Amperes)
 $I = CV \frac{dV}{dt}$

IV. Total Impedance of a capacitor (ohms)
 $Z = \sqrt{R_S^2 + (XC - X_L)^2}$

V. Capacitive Reactance (ohms)
 $XC = \frac{1}{2\pi fC}$

VI. Inductive Reactance (ohms)
 $X_L = \frac{2\pi fL}{\text{V}}$

VII. Phase Angles:
 Ideal Capacitors: Current leads voltage 90°
 Ideal Inductors: Current lags voltage 90°
 Ideal Resistors: Current in phase with voltage

VIII. Dissipation Factor (%)
 $D.F. = \tan \delta$ (loss angle) = $(2\pi f)(E.S.R.)$

IX. Power Factor (%)
 $P.F. = \sin \delta$ (loss angle) = $\cos \phi$ (phase angle)
 $P.F. = (\text{when less than 10%}) = DF$

X. Quality Factor (dimensionless)
 $Q = \cotan \delta$ (loss angle) = $1 / D.F.$

XI. Equivalent Series Resistance (ohms)
 $E.S.R. = (D.F.) \frac{X_C}{C}$

XII. Power Loss (watts)
 $\text{Power Loss} = 2\pi fCV^2 \times D.F.$

XIII. KVA (Kilowatts)
 $KVA = 2\pi fCV^2 \times 10^{-3}$

XIV. Temperature Characteristic (ppm/°C)
 $T.C. = \frac{C_{t} - C_{25} \times 10^6}{C_{25}(T_{t} - 25)}$

XV. Capac Drift (%)
 $C.D. = \frac{C_{1} - C_{2}}{C_{1}} \times 100$

XVI. Reliability of Ceramic Capacitors
 $D.F. = \frac{E.S.R.}{(2\pi fC)}$

XVII. Capacitors in Series (current the same)
 Any Number: $\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots + \frac{1}{C_N}$

XVIII. Capacitors in Parallel (voltage the same)
 $C_T = C_1 + C_2 + \cdots + C_N$

XIX. Aging Rate
 $A.R. = \% \Delta C/$decade of time

XX. Decibels
 $db = 20 \log \frac{V_1}{V_2}$

METRIC PREFIXES

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Prefix</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pico</td>
<td>10^{-12}</td>
<td>X</td>
</tr>
<tr>
<td>Nano</td>
<td>10^{-9}</td>
<td>P</td>
</tr>
<tr>
<td>Micro</td>
<td>10^{-6}</td>
<td>n</td>
</tr>
<tr>
<td>Milli</td>
<td>10^{-3}</td>
<td>m</td>
</tr>
<tr>
<td>Deci</td>
<td>10^{-1}</td>
<td>d</td>
</tr>
<tr>
<td>Kilo</td>
<td>10^{3}</td>
<td>k</td>
</tr>
<tr>
<td>Mega</td>
<td>10^{6}</td>
<td>M</td>
</tr>
<tr>
<td>Giga</td>
<td>10^{9}</td>
<td>G</td>
</tr>
<tr>
<td>Tera</td>
<td>10^{12}</td>
<td>T</td>
</tr>
</tbody>
</table>

SYMBOLS

- K = Dielectric Constant
- A = Area
- T_D = Dielectric thickness
- V = Voltage
- t = time
- L_o = Operating life
- f = frequency
- L = Inductance
- δ = Loss angle
- ϕ = Phase angle
- X & Y = exponent effect of voltage and temp.
- R_s = Series Resistance

USA
AVX Myrtle Beach, SC
Corporate Offices
Tel: 843-446-9411
FAX: 843-626-2592

AVX Northwest, WA
Tel: 360-699-8746
FAX: 360-699-8751

AVX North Central, IN
Tel: 317-848-7153
FAX: 317-844-9314

AVX Mid/Pacific, MN
Tel: 952-974-9155
FAX: 952-974-9179

AVX Southwest, AZ
Tel: 480-539-1406
FAX: 480-539-1501

AVX South Central, TX
Tel: 972-669-1223
FAX: 972-669-2090

AVX Southeast, NC
Tel: 919-878-8223
FAX: 919-878-9642

AVX Canada
Tel: 905-564-8959
FAX: 905-564-9728

EUROPE

AVX Limited, England
European Headquarters
Tel: +44 (0) 1252 770000
FAX: +44 (0) 1252 770001

AVX S.A., France
Tel: +33 (1) 69.18.46.00
FAX: +33 (1) 69.28.73.87

AVX GmbH, Germany - AVX
Tel: +49 (0) 8131 9004-44
FAX: +49 (0) 8131 9004-44

AVX GmbH, Germany - Elco
Tel: +49 (0) 2741 2990
FAX: +49 (0) 2741 299133

AVX Czech Republic, s.r.o.
Tel: +420 (0) 467 558340
FAX: +420 (0) 467 558345

AVX/Kyocera, Singapore
Asia-Pacific Headquarters
Tel: (65) 258-2833
FAX: (65) 350-4880

AVX/Kyocera, Hong Kong
Tel: (852) 3-363-3203
FAX: (852) 2-765-8185

AVX/Kyocera, Korea
Tel: (82) 2-785-6504
FAX: (82) 2-784-5411

AVX/Kyocera, Taiwan
Tel: (886) 2-2696-4636
FAX: (886) 2-2696-4237

ASIA-PACIFIC

AVX/Kyocera, China
Tel: (86) 21-6249-0314-16
FAX: (86) 21-6249-0313

AVX/Kyocera, Malaysia
Tel: (60) 4-228-1190
FAX: (60) 4-228-1196

Elco, Japan
Tel: 045-943-2067
FAX: 045-943-2910

Kyocera, Japan - AVX
Tel: (81) 75-604-3424
FAX: (81) 75-604-3425

Kyocera, Japan - KDP
Tel: (81) 75-604-3424
FAX: (81) 75-604-3425

http://www.avxcorp.com